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We characterize an attractor-merging crisis in a spatially extended system exemplified by the Kuramoto-
Sivashinsky equation. The simultaneous collision of two coexisting chaotic attractors with an unstable periodic
orbit and its associated stable manifold occurs in the high-dimensional phase space of the system, giving rise
to a single merged chaotic attractor. The time series of the post-crisis regime displays intermittent behavior.
The origin of this crisis-induced intermittency is elucidated in terms of alternate switching between two chaotic
saddles embedded in the merged chaotic attractor.
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Chaotic attractors in nonlinear dissipative systems can un-
dergo sudden changes as a system parameter is varied. These
discontinuous changes, calledcrises, occur when the chaotic
attractor collides with an unstable periodic orbit(UPO) and
its stable manifold[1–6]. There has been a great interest in
the study of crises in partial differential equations(PDE’s) in
recent years. Chianet al. [3] characterized a high-
dimensional interior crisis in the Kuramoto-Sivashinsky
(KS) equation[7]. Rempel and Chian, and Rempelet al. [5]
studied the role of nonattracting chaotic sets, called chaotic
saddles, in the onset of the interior crisis reported by Chian
et al. [3]. Transition to spatiotemporal chaos via crisis in a
drift wave system was studied by He and Chian[8]. In this
paper we characterize an attractor-merging crisis in the
Kuramoto-Sivashinsky equation.

In an attractor-merging crisis two or more chaotic attrac-
tors merge to form one single chaotic attractor[2]. At a criti-
cal value of the control parameter, the pre-crisis chaotic at-
tractors simultaneously touch the boundary separating their
basins of attraction, and collide with one or more UPO’s on
the basin boundary. Attractor-merging crises have been ob-
served in several numerical[2,9] and experimental[10]
works. Most previous works on merging crisis were re-
stricted to low-dimensional dynamical systems[2,9]. Chian
et al. [11] characterized an attractor-merging crisis in a van
der Pol model of nonlinear business cycles. Saueret al. [12]
reported the occurrence of an attractor merging in a spatially
extended system given by an Ikeda-like model. Münkel and
Kaiser [13] discovered an intermittent route to chaos via at-
tractor merging in the Laser-Kuramoto-Sivashinsky equa-
tion. In this paper we present a detailed characterization of
an attractor-merging crisis in the KS equation, by demon-
strating the simultaneous collision of two chaotic attractors
with an unstable periodic orbit and the basin boundary. The
time series of the post-crisis regime displays intermittency,
which can be seen as an alternation between two chaotic
transients due to coupling between twochaotic saddles
[5,6,14–16] embedded in the post-crisis chaotic attractor.
Hunt et al. [17], and Sweet and Ott[18] derived a formula
relating the exit timet, the dimension of the stable manifolds
and the Lyapunov exponents of a chaotic saddle, and verified
the validity of the formula for two- (2D) and four-
dimensional(4D) dynamical systems. We apply this formula

to the KS equation and establish a relation between the char-
acteristic time scale of the intermittent regime and the under-
lying chaotic saddles.

The Kuramoto-Sivashinsky equation can be written as
[3,5,7,19]

]tu = − ]x
2u − n]x

4u − ]xu
2, s1d

wheren is a “viscosity” damping parameter. We assume that
usx,td is subject to periodic boundary conditionsusx,td
=usx+2p ,td. To obtain the numerical solution of Eq.(1) we
use the spectral Galerkin method, by applying a Fourier de-
composition for the functionusx,td, usx,td=ok=−`

` bkstdeikx,
which yields an infinite set of ordinary differential equations
for the complex Fourier coefficientsbkstd. To simplify the
analysis we restrict our attention to the subspace of odd func-
tionsusx,td=−us−x,td, and assumebkstd purely imaginary by
settingbkstd=−iakstd /2, whereakstd are real. The final set of
equations is given by[3,5,19]

ȧkstd = sk2 − nk4dakstd −
k

2 o
m=−N

N

amstdak−mstd, s2d

where the dot denotes derivative with respect tot, and 1
økøN, N is the truncation order. We adopt a Poincaré map
defined as thesN−1d dimensional hyperplane given bya1

=0, with ȧ1.0, and study the dynamics of the KS equation
by varying the control parametern. Following Refs.[3,5,19],
we choose a range ofn for which the dynamics of the KS
equation can be chaotic in time, but the coherent spatial
structures are preserved, with a small number of excited
modes. In such regimes, the solutions of the KS equation
display many features typical of low-dimensional dynamical
systems. We chooseN=16, since numerical results show that
the dynamics is qualitatively the same for largerN.

A bifurcation diagram for Eq.(2) can be constructed by
plotting the value of any given Fourier mode of a randomly
initialized trajectory as a function of the control parametern.
A supercritical Hopf bifurcation(HB) [20] occurs atn=nHB
<0.03462. Forn.nHB, random initial conditions are at-
tracted to a steady state. Forn,nHB, the steady state be-
comes unstable, and a period-one(P1) stable limit cycle
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arises. In the Poincaré map this limit cycle appears as a fixed
point attractor. Atn=nPF<0.03031 the P1 attractor loses its
asymptotic stability in a supercritical pitchfork bifurcation
(PF) [20], and becomes an unstable periodic orbit(equivalent
to a saddle point in the Poincaré map) for n,nPF. At the
same point, two new P1 periodic attractors, A1 and A2, are
created. The bifurcation diagram of the Fourier modea2 for
attractors A1 (dark lines) and A2 (light lines) is shown in Fig.
1(a). The dashed line represents the evolution of the UPO
created at PF, and Merging Crisis(MC) denotes attractor-
merging crisis. Both attractors A1 and A2 undergo a similar
sequence of period-doubling bifurcations that leads to two
disjoint chaotic attractors. The symmetry between A1 and A2
reflects the invariance under the shiftusx,td→usx+p ,td,
which is a particular case of the translation invariance prop-
erty of Eq. (1) under periodic boundary conditions in the
subspace of odd functions[19]. At the crisis pointn=nMC
<0.02990058 the two chaotic attractors simultaneously col-
lide with the P1mediating unstable periodic orbit(M) and
merge to form a single wide chaotic attractor forn,nMC.

After colliding with M, the two pre-crisis chaotic attrac-
tors lose their stability and are converted into two chaotic
saddles(CS1 and CS2) immersed in the merged chaotic at-

tractor, similarly to what happens in the interior crisis
[5,6,16]. In Fig. 1(b) we plot the bifurcation diagram(black)
of Fig. 1(a) up to MC sn.nMCd, and after MCsn,nMCd we
plot the variation of the Poincaré points of the newly created
chaotic saddles(gray). The white space within the gray areas
of the chaotic saddles aregapsthat reflect the discontinuous
and fractal structure of the chaotic saddles along their un-
stable foliation[5,6,16]. CS1 and CS2 are separated by the
dashed line in Fig. 1(b).

The characterization of the attractor-merging crisis is
done by showing the simultaneous collision of A1 and A2
with the mediating orbit M and with the boundary separating
the basins of attraction of both attractors. The collision of A1
and A2 with M at nMC is displayed in Fig. 2, in which a
two-dimensional projection of the Poincaré mapsa2,a3d is
adopted. Figure 2(a) shows attractors A1 (dark line) and A2
(light line), and the Poincaré point of the P1 mediating orbit
(cross) before the crisis, atn=0.02994. AtnMC both attrac-
tors collide headon with M, as shown in Fig. 2(b). For n
,nMC there is only one merged chaotic attractor that con-
tains both pre-crisis attractors.

Next, we show the collision of A1 and A2 with the bound-
ary of their basins of attraction. Since we are working in a
15-dimensional(15D) Poincaré phase space, in order to vi-
sualize this collision we choose a suitable 2D projection of
the high-dimensional basins by using a grid of initial condi-
tions generated through a linear interpolation between points
on the chaotic attractors[5]. Each initial condition is colored
according to the basin to which it belongs. Figure 2(c) is an
enlargement of the rectangular region of Fig. 2(b), showing
the basins of attraction for attractors A1 and A2 at nMC. The
dark background represents points in the basin of A1 (dark
lines) and the white background represents the basin of A2
(light line). At crisis both attractors collide with their com-
mon basin boundary, as well as with the mediating orbit M
(cross). The boundary is also the stable manifold of M.

After crisis, an orbit in the chaotic attractor can spend
some transient time in the region previously occupied by the
pre-crisis A1 attractor(region 1), before it crosses the stable
manifold of M and moves into the region of the pre-crisis A2
attractor(region 2). It then spends another transient time in
region 2, before moving back to region 1. This dynamics
repeats intermittently, leading tocrisis-induced intermittency
[2]. Figure 3(a) shows an intermittent time series with the
Poincaré points of the Fourier modea2 at n=0.02990, after
crisis. Figure 3(b) shows the space-time contour plot for the
intermittent regime atn=0.02990.

The characteristic intermittency time, defined as the aver-
age time between switches among regions 1 and 2, is closely
related to the two underlying chaotic saddles present in the
post-crisis chaotic attractor CA, shown in Fig. 4(a) for n
=0.02987. After the merging crisis the two pre-crisis chaotic
attractors A1 and A2 lose their asymptotic stability, since
typical orbits no longer stay in regions 1 or 2 for all time.
However, there are some “atypical” chaotic orbits that stay
confined in regions 1 and 2 forever. These orbits belong to
the two chaotic saddles created after the merging crisis and
are depicted in Fig. 4(b). The two chaotic saddles, CS1 (dark
lines) and CS2 (light lines), are found with thepim triple
algorithm [15], and are subsets of the post-crisis chaotic at-

FIG. 1. (a) Superposition of the bifurcation diagrams for attrac-
tors A1 (dark lines) and A2 (light lines), showing the merging of
these two attractors into a single attractor at MC. PF denotes pitch-
fork bifurcation, and MC denotes attractor-merging crisis. The
dashed line represents the mediating unstable periodic orbit(M)
created at PF;(b) conversion of attractors A1 and A2 into two cha-
otic saddles(gray) after MC. The two chaotic saddles are separated
by the dashed line.
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tractor. The orbits of all initial conditions in the former basin
of A1 (basin of A2) eventually leave this region, moving in to
region 2(region 1), except for initial conditions on the stable
manifold of CS1 sCS2d, which is a set of measure zero. All
the other trajectories wander in the close vicinity of CS1
sCS2d for some transient time, before leaving to region 2
(region 1). These transitions between regions 1 and 2 are due
to the coupling UPO’s that are located within the gaps of CS1
and CS2, and establish the dynamical connection between the
two chaotic saddles[6,16].

Let t denote the average exit time a random initial con-
dition takes to leave the vicinity of a chaotic saddle. Huntet
al. [17] and Sweet and Ott[18] derived the following for-

mula relatingt, the Lyapunov exponents and the fractal di-
mension of the stable manifolds of a chaotic saddle. Suppose
the system is anN-dimensional map, withU positive andS
negative Lyapunov exponents, such thatU+S=N. The expo-
nents can be labeled aslU

+ ùlU−1
+ ù ¯ ùl1

+.0.−l1
−

ù−l2
−ù ¯ ù−lS

−. Then, the fractal dimensionsDsd of the
stable manifold of a chaotic saddle is given by

Ds = S+ J

+ FSo
j=1

U

l j
+ − 1/tD − sl1

+ + l2
+ + ¯ + lJ

+dGY lJ+1
+ ,

s3d

where J is defined by l1
++¯ +lJ

++lJ+1
+ ù so j=1

U l j
+−1/td

ùl1
++¯ +lJ

+.
We use Eq.(3) to compute the average exit timet. The

Lyapunov spectra are computed from pim-triple trajectories.
The convergence of the maximum Lyapunov exponentlmax
<0.76 for n=0.02990 is shown in Fig. 5(a). There is one
null exponent(representing the direction along the flow) and
14 negative exponents, so thatS=14, U=1, andJ=0. The
value ofDs is found with the following version of the uncer-
tainty algorithm for box counting dimension[21,22]: ran-
domly choose an initial conditionx on a one-dimensional
line inside the former basin of attractor A1. If the exit time of
x (i.e., the time the orbit ofx takes to escape from region 1)
is greater than the average exit timet, then considerx be-

FIG. 2. Two-dimensional projectionsa2,a3d of attractors A1
(dark lines) and A2 (light lines): (a) before the merging crisis; and
(b) at the merging crisis point,nMC. The cross denotes the mediat-
ing orbit; (c) is an enlargement of the rectangular region in(b),
showing the basins of attraction for A1 (dark lines) and A2 (light
line) at nMC. The dark background represents the basin of A1 and
the white region represents the basin of A2.

FIG. 3. (a) Intermittent time series ofa2 at n=0.02990; (b)
contour plot of the space-time evolution of the intermittent regime
at n=0.02990, showing spatial coherence.
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longs to the stable manifold(SM) of CS1. Apply a small
perturbatione to x. If one of the three points,x, x+e, and
x−e, belongs to SM and another does not belong to SM, then
x is called uncertain. Compute the fraction of uncertain
points fsed for a large number of initial conditionsx. For
fractal sets the value offsed scales withe as fsed,ea, where
a is the uncertainty exponent. Figure 5(b) illustrates the
computation ofa from the graph offsed versus e on a
base-10 logarithmic scale forn=0.02990. The slope of the
fitted line gives the uncertainty exponenta<0.018. The box-
counting dimension of the intersection of the stable manifold
with the 1D line isds=1−a. In the full 15D phase space of
the Poincaré map, the box-counting dimension of the stable
manifold of the chaotic saddle isDs=15−a=14+ds [18].

We compare the values oft obtained from Eq.(3) with
the characteristic intermittency time(also denoted byt), ob-
tained as the average over a long time series of the switching
time between regions 1 and 2. Figure 6 is a plot of log10 t vs
log10snMC−nd, where the solid line with slopeg<−0.52 is a
linear fit of the values of the characteristic intermittency time
computed from time series(circles). Figure 6 reveals that the
characteristic timet decreases with the distance from the
critical parameter valuenMC following a power-law decay,
t,snMC−ndg, as expected[2]. The crosses denote the exit
time from CS1 computed from Eq.(3) (the value oft is the
same for CS1 and CS2, due to the symmetry of the problem).
The agreement between the values oft obtained from time
series and from Eq.(3) demonstrates that the characteristic

time scale of this crisis-induced intermittency can be pre-
dicted from the intrinsic properties of the chaotic saddles.
Alternatively, the value ofg can be found by using the value
of t obtained from Eq.(3) and the relationt,snMC−ndg. For
example, forn=0.02990 we findg<−0.51, which is close to
the value obtained from time seriessg<−0.52d.

FIG. 4. (a) Post-crisis chaotic attractor(CA); (b) the two chaotic
saddles, CS1 and CS2, that compose CA.

FIG. 5. (a) Convergence of the maximum Lyapunov exponent of
the chaotic saddle atn=0.02990;(b) Plot of the fraction of uncer-
tain initial conditionsfsed vs the uncertaintye on a base-10 loga-
rithmic scale. The slope of the fitted line gives the uncertainty ex-
ponent a<0.018. In the 15-dimensional phase space of the
Poincaré map, the fractal dimension of the stable manifold of the
chaotic saddle isDs=15−a<14.968.

FIG. 6. log10 t vs log10snMC−nd. The solid line with slopeg
<−0.52 is a linear fit of the values of the characteristic intermit-
tency timet computed from time series(circles); the crosses denote
the exit time from CS1 computed with Eq.(3).
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In summary, we have characterized an attractor-merging
crisis in a partial differential equation exemplified by the
Kuramoto-Sivashinsky equation. In particular, the role of
chaotic saddles in the crisis-induced intermittency has been
elucidated in this high-dimensional dynamical system. We

make use of a relation between the exit time, Lyapunov ex-
ponents and stable manifolds of a chaotic saddle to predict
the characteristic time scale of the intermittency.
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