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Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation
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We characterize an attractor-merging crisis in a spatially extended system exemplified by the Kuramoto-
Sivashinsky equation. The simultaneous collision of two coexisting chaotic attractors with an unstable periodic
orbit and its associated stable manifold occurs in the high-dimensional phase space of the system, giving rise
to a single merged chaotic attractor. The time series of the post-crisis regime displays intermittent behavior.
The origin of this crisis-induced intermittency is elucidated in terms of alternate switching between two chaotic
saddles embedded in the merged chaotic attractor.
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Chaotic attractors in nonlinear dissipative systems can unto the KS equation and establish a relation between the char-
dergo sudden changes as a system parameter is varied. Thasgeristic time scale of the intermittent regime and the under-
discontinuous changes, calledses occur when the chaotic lying chaotic saddles.
attractor collides with an unstable periodic or@itPO) and The Kuramoto-Sivashinsky equation can be written as
its stable manifold1-6]. There has been a great interest in[3 57,19
the study of crises in partial differential equatigifDE'’s) in
recent years. Chianet al. [3] characterized a high- AU = — J2U — iU — A2, (1)
dimensional interior crisis in the Kuramoto-Sivashinsky
(KS) equation[7]. Rempel and Chian, and Remmlal.[5]  Wherev is a “viscosity” damping parameter. We assume that
studied the role of nonattracting chaotic sets, called chaotig(x,t) is subject to periodic boundary conditiongx,t)
saddles, in the onset of the interior crisis reported by Chiaru(x+2,t). To obtain the numerical solution of E(L) we
et al. [3]. Transition to spatiotemporal chaos via crisis in ause the spectral Galerkin method, by applying a Fourier de-
drift wave system was studied by He and Chi8h In this  composition for the functioru(x,t), u(x,t)==__, b(t)e¥¥,
paper we characterize an attractor-merging crisis in thgynich yields an infinite set of ordinary differential equations
Kuramoto-Sivashinsky equation. for the complex Fourier coefficients (t). To simplify the

torlsnn?grggrgcf"gr;‘m;:g'g?nglr('esfhg’(‘;(t)iCogt?r‘;(r[%fg"ti?;'gr%t_trac'analysis we restrict our attention to the subspace of odd func-
cal value of the control parameter, the pre-crisis chaotic ayonsu(x,t):—u(—x,t), and assum(t) purely imaginary by

tractors simultaneously touch the boundary separating theﬁettmgbk(t).__'.ak(t)/ 2, whereat) are real. The final set of
basins of attraction, and collide with one or more UPQ’s on€duations is given b§3,5,19

the basin boundary. Attractor-merging crises have been ob- X

served in several numericdR,9] and experimental[10] S = (12 _R

works. Most previous works on merging crisis were re- 4D = (€ - kHay 2m§‘N Bn(D3m(V), @
stricted to low-dimensional dynamical systefizs9]. Chian

et al. [11] characterized an attractor-merging crisis in a varwhere the dot denotes derivative with respectt,t@nd 1

der Pol model of nonlinear business cycles. Satel. [12] <k=N, N is the truncation order. We adopt a Poincaré map
reported the occurrence of an attractor merging in a spatiallgefined as théN-1) dimensional hyperplane given ey
extended system given by an Ikeda-like model. Muinkel and=0, with a; >0, and study the dynamics of the KS equation
Kaiser[13] discovered an intermittent route to chaos via at-by varying the control parameter Following Refs[3,5,19,
tractor merging in the Laser-Kuramoto-Sivashinsky equawe choose a range of for which the dynamics of the KS
tion. In this paper we present a detailed characterization oéquation can be chaotic in time, but the coherent spatial
an attractor-merging crisis in the KS equation, by demonstructures are preserved, with a small number of excited
strating the simultaneous collision of two chaotic attractorsmodes. In such regimes, the solutions of the KS equation
with an unstable periodic orbit and the basin boundary. Thealisplay many features typical of low-dimensional dynamical
time series of the post-crisis regime displays intermittencysystems. We choo9¢=16, since numerical results show that
which can be seen as an alternation between two chaotibie dynamics is qualitatively the same for lardér

transients due to coupling between tvehaotic saddles A bifurcation diagram for Eq(2) can be constructed by
[5,6,14-16 embedded in the post-crisis chaotic attractor.plotting the value of any given Fourier mode of a randomly
Hunt et al. [17], and Sweet and Oftl8] derived a formula initialized trajectory as a function of the control parameter
relating the exit timer, the dimension of the stable manifolds A supercritical Hopf bifurcationHB) [20] occurs atv=wvyg

and the Lyapunov exponents of a chaotic saddle, and verifieet 0.03462. Forv>»,g, random initial conditions are at-
the validity of the formula for two-(2D) and four- tracted to a steady state. FoK vy, the steady state be-
dimensional4D) dynamical systems. We apply this formula comes unstable, and a period-o(fel) stable limit cycle
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0.5 ‘ : - tractor, similarly to what happens in the interior crisis
MC [5,6,14. In Fig. 1(b) we plot the bifurcation diagrartblack)
0.39 | | of Fig. 1(a) up to MC (v> y\c), and after MC(v< vyc) we

plot the variation of the Poincaré points of the newly created
| chaotic saddlegyray). The white space within the gray areas
A, of the chaotic saddles agapsthat reflect the discontinuous
P PR and fractal structure of the chaotic saddles along their un-
1 | stable foliation[5,6,1. CS, and C$ are separated by the
dashed line in Fig. (b).
The characterization of the attractor-merging crisis is

= done by showing the simultaneous collision of and A,
~0.05 ‘ - - with the mediating orbit M and with the boundary separating
@ 0.02985  0.03006 ~ 0.03027  0.03048 the basins of attraction of both attractors. The collision f A
v and A, with M at yyc is displayed in Fig. 2, in which a
05 , . two-dimensional projection of the Poincaré m@p,as;) is

adopted. Figure () shows attractors A(dark line and A,
(light line), and the Poincaré point of the P1 mediating orbit
(crosg before the crisis, av=0.02994. Atyy,c both attrac-
tors collide headon with M, as shown in Fig(b2 For v
<y there is only one merged chaotic attractor that con-
tains both pre-crisis attractors.

Next, we show the collision of Aand A, with the bound-
ary of their basins of attraction. Since we are working in a
15-dimensional15D) Poincaré phase space, in order to vi-
sualize this collision we choose a suitable 2D projection of
~005 . i the high-dimensional basins by using a grid of initial condi-
(b) 0.02985 0.03006 0.03027 0.03048 tions generated through a linear interpolation between points

v on the chaotic attractof®]. Each initial condition is colored
according to the basin to which it belongs. Figu(e)ds an

FIG. 1. (8 Superposition of the bifurcation diagrams for attrac- enlargement of the rectangular region of Figh)2 showing
tors A, (dark lineg and A, (light lines), showing the merging of  the basins of attraction for attractors And A, at vyc. The
these two attractors into a single attractor at MC. PF denotes pitchqygrk background represents points in the basin pidark
fork bifur_cation, and MC denotc_—zs_attractor-merging c_risis. _Thelines) and the white background represents the basin of A
dashed line represents the mediating unstable periodic @it (jight line). At crisis both attractors collide with their com-
created at PHb) conversion of attractors Aand A, into two cha- mon basin boundary, as well as with the mediating orbit M
otic saddleggray) after MC. The two chaotic saddles are separated(cross). The boundary is also the stable manifold of M.

by the dashed line. After crisis, an orbit in the chaotic attractor can spend
arises. In the Poincaré map this limit cycle appears as a fixegome transient time in the region previously occupied by the
point attractor. Atv=vpr~0.03031 the P1 attractor loses its Pre-crisis A attractor(region J, before it crosses the stable
asymptotic stability in a supercritical pitchfork bifurcation manifold of M and moves into the region of the pre-crisis A
(PP [20], and becomes an unstable periodic ofeiuivalent  attractor(region 2. It then spends another transient time in
to a saddle point in the Poincaré mdpr v<vpg. At the  region 2, before moving back to region 1. This dynamics
same point, two new P1 periodic attractors, #d A, are  repeats intermittently, leading tisis-induced intermittency
created. The bifurcation diagram of the Fourier maddor  [2]. Figure 3a) shows an intermittent time series with the
attractors A (dark lineg and A, (light lines) is shown in Fig.  Poincaré points of the Fourier mode at v=0.02990, after
1(a). The dashed line represents the evolution of the UPQrisis. Figure 8o) shows the space-time contour plot for the
created at PF, and Merging CrigidIC) denotes attractor- intermittent regime at=0.02990.
merging crisis. Both attractors,Aand A, undergo a similar The characteristic intermittency time, defined as the aver-
sequence of period-doubling bifurcations that leads to twage time between switches among regions 1 and 2, is closely
disjoint chaotic attractors. The symmetry betweerad A, related to the two underlying chaotic saddles present in the
reflects the invariance under the shiftx,t) —u(x+,t),  post-crisis chaotic attractor CA, shown in Figayfor v
which is a particular case of the translation invariance prop=0.02987. After the merging crisis the two pre-crisis chaotic
erty of EqQ. (1) under periodic boundary conditions in the attractors A and A, lose their asymptotic stability, since
subspace of odd functiond9]. At the crisis pointv=vyc  typical orbits no longer stay in regions 1 or 2 for all time.
~0.02990058 the two chaotic attractors simultaneously colHowever, there are some “atypical” chaotic orbits that stay
lide with the P1mediating unstable periodic orb{tM) and confined in regions 1 and 2 forever. These orbits belong to
merge to form a single wide chaotic attractor o vy,c. the two chaotic saddles created after the merging crisis and
After colliding with M, the two pre-crisis chaotic attrac- are depicted in Fig. ). The two chaotic saddles, G&lark
tors lose their stability and are converted into two chaotidines) and C$ (light lines), are found with thepim triple
saddles(CS, and CS) immersed in the merged chaotic at- algorithm[15], and are subsets of the post-crisis chaotic at-
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v =0.02990058 FIG. 3. (8 Intermittent time series o&, at »=0.02990;(b)
contour plot of the space-time evolution of the intermittent regime
117 at »=0.02990, showing spatial coherence.
g mula relatingr, the Lyapunov exponents and the fractal di-
mension of the stable manifolds of a chaotic saddle. Suppose
1166 the system is amlN-dimensional map, withJ) positive andS

negative Lyapunov exponents, such tbiatS=N. The expo-
nents can be labeled a&|=\{_;=---=\]>0>-\]

1.162 & - =-\,=---=-\g. Then, the fractal dimensioDy) of the
(© 0.105 01225 0‘1? 0.1875 0175 stable manifold of a chaotic saddle is given by
FIG. 2. Two-dimensional projectioffa,,a3) of attractors A D,=S+J
(dark lineg and A, (light lines): (a) before the merging crisis; and U
(b) at the merging crisis pointy,c. The cross denotes the mediat- + Nt anta + +
ing orbit; (c) is an enlargement of the rectangular region(fy, * gi)‘i Ur)=(\+a+ ) ANTER

showing the basins of attraction for;Adark lineg and A, (light
line) at vyc. The dark background represents the basin pfaAd ©)

the white region represents the basin of A where J is defined by )\14_...+)\3+)\3+1>(2}":1)\;'—1/T)
tractor. The orbits of all initial conditions in the former basin =\]+---+\].
of A, (basin of A) eventually leave this region, movinginto ~ We use Eq(3) to compute the average exit time The
region 2(region 1), except for initial conditions on the stable Lyapunov spectra are computed from pim-triple trajectories.
manifold of C§ (CS,), which is a set of measure zero. All The convergence of the maximum Lyapunov exponen,
the other trajectories wander in the close vicinity ofCS =0.76 for »=0.02990 is shown in Fig.(8). There is one
(CS,) for some transient time, before leaving to region 2null exponen{representing the direction along the flpand
(region 1. These transitions between regions 1 and 2 are du&4 negative exponents, so that14, U=1, andJ=0. The
to the coupling UPO's that are located within the gaps of CS value of Dy is found with the following version of the uncer-
and C$, and establish the dynamical connection between théainty algorithm for box counting dimensiof21,22: ran-
two chaotic saddlef5,16). domly choose an initial conditiom on a one-dimensional
Let 7 denote the average exit time a random initial con-line inside the former basin of attractor Af the exit time of
dition takes to leave the vicinity of a chaotic saddle. Hent x (i.e., the time the orbit ok takes to escape from region 1
al. [17] and Sweet and Oft18] derived the following for- is greater than the average exit timethen considex be-
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' FIG. 5. (a) Convergence of the maximum Lyapunov exponent of
the chaotic saddle at=0.02990;(b) Plot of the fraction of uncer-
tain initial conditionsf(e) vs the uncertainty on a base-10 loga-
FIG. 4. (a) Post-crisis chaotic attracteCA); (b) the two chaotic  rithmic scale. The slope of the fitted line gives the uncertainty ex-
saddles, CSand CS3, that compose CA. ponent «=~0.018. In the 15-dimensional phase space of the
Poincaré map, the fractal dimension of the stable manifold of the
longs to the stable manifoldSM) of CS,. Apply a small  chaotic saddle iD.=15-a~ 14.968.
perturbatione to x. If one of the three points, x+e¢, and

Xx—¢, belongs to SM and another does not belong to SM, then
x is called uncertain. Compute the fraction of uncertaintime scale of this crisis-induced intermittency can be pre-
points f(e) for a large number of initial conditions. For  dicted from the intrinsic properties of the chaotic saddles.
fractal sets the value df ) scales withe asf(e) ~ €%, where  Alternatively, the value ofy can be found by using the value
a is the uncertainty exponent. Figurebb illustrates the ©f 7obtained from Eq(3) and the relation~ (vyc—»)”. For
computation ofa from the graph off(e) versuse on a  example, forr=0.02990 we findy~-0.51, which is close to
base-10 logarithmic scale for=0.02990. The slope of the the value obtained from time seriég~-0.52.
fitted line gives the uncertainty exponert=0.018. The box-
counting dimension of the intersection of the stable manifold
with the 1D line isds=1-«a. In the full 15D phase space of
the Poincaré map, the box-counting dimension of the stable
manifold of the chaotic saddle B;=15-a=14+d, [18]. 3.125}
We compare the values af obtained from Eq(3) with
the characteristic intermittency tinfalso denoted by), ob-

(b) a

o
tained as the average over a long time series of the switching gf 225

time between regions 1 and 2. Figure 6 is a plot of jagvs -

log;o(vme—v), Where the solid line with slopg~-0.52 is a 1.375¢

linear fit of the values of the characteristic intermittency time

computed from time seriggircles). Figure 6 reveals that the

characteristic timer decreases with the distance from the 05 65 75 65 =5 45

critical parameter valuey,c following a power-law decay, log (Ve = V)

7~ (vmc—v)?, as expected2]. The crosses denote the exit

time from CS computed from Eq(3) (the value ofr is the FIG. 6. logg T Vs logo(vmc—7). The solid line with slopey
same for Cgand CS, due to the symmetry of the problém =-0.52 is a linear fit of the values of the characteristic intermit-

The agreement between the valuesrajbtained from time  tency timer computed from time serigsircles); the crosses denote
series and from Eq3) demonstrates that the characteristicthe exit time from C$ computed with Eq(3).
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In summary, we have characterized an attractor-mergingnake use of a relation between the exit time, Lyapunov ex-
crisis in a partial differential equation exemplified by the ponents and stable manifolds of a chaotic saddle to predict
Kuramoto-Sivashinsky equation. In particular, the role ofthe characteristic time scale of the intermittency.
chaotic saddles in the crisis-induced intermittency has been
elucidated in this high-dimensional dynamical system. We This work is supported by CNPq and FAPESP.
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